
Baltic Honeybadger 2022 - Riga - September 3-4 - Michel ‘ketominer’ L. - v1.2

Code signing & verification
Are we doing it wrong? What could we improve?

What I do

What this is about
Why?

Part 1: Package verification principles and implementations

- PGP in 60 seconds

- Package signing

- Package verification

Part 2: Out of band attacks on bitcoin related executables

- How I would attack bitcoin users

- How I would try to mitigate

Why?
I got angry at the bitcoin core package signatures

Why?
I got angry at the bitcoin core package signatures

Why?
The solution was right in front of me - but led to a talk idea!

Why?
The solution was right in front of me - but led to a talk idea!

Part 1: Package verification
principles and implementations

PGP in 60 seconds (1/2)
Key generation / Encrypt (+sign) / Decrypt

PGP in 60 seconds (1/2)
Key generation / Encrypt (+sign) / Decrypt

my key pair (pub / priv)

passphrase protection

optional storage on physical device

PGP in 60 seconds (1/2)
Key generation / Encrypt (+sign) / Decrypt

recipient key pair (pub / priv)
my key pair (pub / priv)

passphrase protection

optional storage on physical device

PGP in 60 seconds (1/2)
Key generation / Encrypt (+sign) / Decrypt

recipient key pair (pub / priv)

cleartext cyphertext cleartext

my key pair (pub / priv)

passphrase protection

optional storage on physical device

PGP in 60 seconds (1/2)
Key generation / Encrypt (+sign) / Decrypt

recipient key pair (pub / priv)

cleartext cyphertext cleartext

my key pair (pub / priv)

passphrase protection

optional storage on physical device

cleartext signed
cyphertext

signed
cleartext

PGP in 60 seconds (1/2)
Key generation / Encrypt (+sign) / Decrypt

recipient key pair (pub / priv)

cleartext cyphertext cleartext

my key pair (pub / priv)

passphrase protection

optional storage on physical device

cleartext signed
cyphertext

signed
cleartext

cleartext signed
cleartext

(signature can be
separated)

PGP in 60 seconds (1/2)
Key generation / Encrypt (+sign) / Decrypt

recipient key pair (pub / priv)

cleartext cyphertext cleartext

my key pair (pub / priv)

passphrase protection

optional storage on physical device

of course, we
can encrypt with
several keys for

several recipients
- including the

signer

cleartext signed
cyphertext

signed
cleartext

cleartext signed
cleartext

(signature can be
separated)

PGP in 60 seconds (2/2)
Parties!

??
?

PGP in 60 seconds (2/2)
Parties!

2000’s:

??
?

PGP in 60 seconds (2/2)
Parties!

2000’s:

??
?

PGP in 60 seconds (2/2)
Parties!

2000’s:

??
?

PGP in 60 seconds (2/2)
Parties!

2000’s:

??
?

PGP in 60 seconds (2/2)
Parties!

2000’s:

??
?

PGP in 60 seconds (2/2)
Parties!

2000’s:

2020’s:

??
?

PGP in 60 seconds (2/2)
Parties!

2000’s:

2020’s: 💩💰

??
?

Package signing

Package signing

#() sha.txt

Package signing

#() sha.txt

Package signing

#() sha.txt sha.txt

Package signing

#() sha.txt sha.txt

bitcoin.tgz
#() sha.txt sha.txt

Package signing

#() sha.txt sha.txt

bitcoin.tgz
#() sha.txt sha.txt

lnd.tgz
#() sha.txt sha.txt

Package verification

sha.txt

Package verification

sha.txt?sha.txt ?

Package verification

#() = ?sha.txt

sha.txt?sha.txt ?

Package verification

#() = ?sha.txt

sha.txt?sha.txt ?

Package verification

#() = ?sha.txt

sha.txt?sha.txt ?

Package verification

Package verification

This is fine… maybe.

Package verification

This is fine… maybe… not?

Many people need to verify signatures programatically.

Package verification

This is fine… maybe… not?

Many people need to verify signatures programatically.

Package verification: strategy 1

Package verification: strategy 1

Issue: assuming
keyservers actually

work (they often don’t)

Package verification: strategy 1

Issue: assuming
keyservers actually

work (they often don’t)

This (kind of) worked
until core 22.0 but

23.0 has many
signatures with

unavailable keys

Package verification: strategy 2

Package verification: strategy 2

Issue 1: relying on a
single signer

Package verification: strategy 2

Issue 1: relying on a
single signer

Issue 2: using default
path for key store

(although the risk is
mitigated)

Package verification: strategy 3

Package verification: strategy 3

Issue 1: keys verified
and provided by node

maker

Package verification: strategy 3

Issue 1: keys verified
and provided by node

maker

Workaround for gpg
exit code 2 - we look
for at least 10 “Good

signature” in the
output

Package verification: strategy 3

Issue 1: keys verified
and provided by node

maker

Workaround for gpg
exit code 2 - we look
for at least 10 “Good

signature” in the
output

Not ideal, work in progress… if 10 people name themselves “Good
signature” we’re screwed.

Part 2: Out of band attacks on
bitcoin related executables

How would I attack Bitcoin users

How would I attack Bitcoin users
• Insert malicious code into anything hot wallet (lnd, whirlpool,

random wallet, …)

https://youtu.be/CR7i1UfBtQM?t=555

How would I attack Bitcoin users
• Insert malicious code into anything hot wallet (lnd, whirlpool,

random wallet, …)

https://youtu.be/CR7i1UfBtQM?t=555

How would I attack Bitcoin users
• Insert malicious code into anything hot wallet (lnd, whirlpool,

random wallet, …)

• Compromise the verification / extraction chain (gpg, tar, …)

https://youtu.be/CR7i1UfBtQM?t=555

How would I attack Bitcoin users
• Insert malicious code into anything hot wallet (lnd, whirlpool,

random wallet, …)

• Compromise the verification / extraction chain (gpg, tar, …)

https://youtu.be/CR7i1UfBtQM?t=555

How would I attack Bitcoin users
• Insert malicious code into anything hot wallet (lnd, whirlpool,

random wallet, …)

• Compromise the verification / extraction chain (gpg, tar, …)

• Trick the user into running a compromised version of the
command

https://youtu.be/CR7i1UfBtQM?t=555

How would I attack Bitcoin users
• Insert malicious code into anything hot wallet (lnd, whirlpool,

random wallet, …)

• Compromise the verification / extraction chain (gpg, tar, …)

• Trick the user into running a compromised version of the
command

https://youtu.be/CR7i1UfBtQM?t=555

How would I attack Bitcoin users
• Insert malicious code into anything hot wallet (lnd, whirlpool,

random wallet, …)

• Compromise the verification / extraction chain (gpg, tar, …)

• Trick the user into running a compromised version of the
command

• Fun fact, “it’s not about how many eyes review the code, it’s
about which eyes” + making the source available doesn’t
guarantee you free reviews

https://youtu.be/CR7i1UfBtQM?t=555

How would I attack Bitcoin users
• Insert malicious code into anything hot wallet (lnd, whirlpool,

random wallet, …)

• Compromise the verification / extraction chain (gpg, tar, …)

• Trick the user into running a compromised version of the
command

• Fun fact, “it’s not about how many eyes review the code, it’s
about which eyes” + making the source available doesn’t
guarantee you free reviews

https://youtu.be/CR7i1UfBtQM?t=555

How would I attack Bitcoin users
• Insert malicious code into anything hot wallet (lnd, whirlpool,

random wallet, …)

• Compromise the verification / extraction chain (gpg, tar, …)

• Trick the user into running a compromised version of the
command

• Fun fact, “it’s not about how many eyes review the code, it’s
about which eyes” + making the source available doesn’t
guarantee you free reviews

• Ref: https://youtu.be/CR7i1UfBtQM?t=555 (highly recommend
watching the whole video) - qrcode link for convenience ->

https://youtu.be/CR7i1UfBtQM?t=555

How would I attack Bitcoin users
• Insert malicious code into anything hot wallet (lnd, whirlpool,

random wallet, …)

• Compromise the verification / extraction chain (gpg, tar, …)

• Trick the user into running a compromised version of the
command

• Fun fact, “it’s not about how many eyes review the code, it’s
about which eyes” + making the source available doesn’t
guarantee you free reviews

• Ref: https://youtu.be/CR7i1UfBtQM?t=555 (highly recommend
watching the whole video) - qrcode link for convenience ->

https://youtu.be/CR7i1UfBtQM?t=555

How would I attack Bitcoin users
• Insert malicious code into anything hot wallet (lnd, whirlpool,

random wallet, …)

• Compromise the verification / extraction chain (gpg, tar, …)

• Trick the user into running a compromised version of the
command

• Fun fact, “it’s not about how many eyes review the code, it’s
about which eyes” + making the source available doesn’t
guarantee you free reviews

• Ref: https://youtu.be/CR7i1UfBtQM?t=555 (highly recommend
watching the whole video) - qrcode link for convenience ->

https://youtu.be/CR7i1UfBtQM?t=555

How would I attack Bitcoin users

How would I attack Bitcoin users

Not terribly practical, most people

(probably) download from the main

repo and it’s hard (as in requiring too

many efforts) to compromise

How would I attack Bitcoin users

Not terribly practical, most people

(probably) download from the main

repo and it’s hard (as in requiring too

many efforts) to compromise

What do we know about this part?

How would I attack Bitcoin users

Not terribly practical, most people

(probably) download from the main

repo and it’s hard (as in requiring too

many efforts) to compromise

What do we know about this part?

Does this…

How would I attack Bitcoin users

Not terribly practical, most people

(probably) download from the main

repo and it’s hard (as in requiring too

many efforts) to compromise

What do we know about this part?

Does this…

…prove anything about what this is?

How would I attack Bitcoin users

How would I attack Bitcoin users

How would I attack Bitcoin users

Wait… what?

How would I attack Bitcoin users

Wait… what?

But I checked the signature!

How would I attack Bitcoin users

Wait… what?

But I checked the signature!

How would I attack Bitcoin users

How would I attack Bitcoin users

How would I attack Bitcoin users

How would I attack Bitcoin users

Installing the super bitcoin tool everyone on telegram told me about

How would I attack Bitcoin users

Installing the super bitcoin tool everyone on telegram told me about

BTW my shitty 5 lines nodeJS “malware” pulls 168 packages!

How would I attack Bitcoin users

Installing the super bitcoin tool everyone on telegram told me about

BTW my shitty 5 lines nodeJS “malware” pulls 168 packages!

How would I attack Bitcoin users

simulated re-login

Installing the super bitcoin tool everyone on telegram told me about

BTW my shitty 5 lines nodeJS “malware” pulls 168 packages!

How would I attack Bitcoin users

simulated re-login

Installing the super bitcoin tool everyone on telegram told me about

BTW my shitty 5 lines nodeJS “malware” pulls 168 packages!

How would I attack Bitcoin users

simulated re-login

checking for multiples binaries with the same name in the path is a good idea…

Installing the super bitcoin tool everyone on telegram told me about

BTW my shitty 5 lines nodeJS “malware” pulls 168 packages!

How would I attack Bitcoin users

simulated re-login

checking for multiples binaries with the same name in the path is a good idea…

Installing the super bitcoin tool everyone on telegram told me about

BTW my shitty 5 lines nodeJS “malware” pulls 168 packages!

How would I attack Bitcoin users

simulated re-login

checking for multiples binaries with the same name in the path is a good idea…

(but sbt could have directly replaced /usr/local/bin/lnd as well)

Installing the super bitcoin tool everyone on telegram told me about

BTW my shitty 5 lines nodeJS “malware” pulls 168 packages!

How would I attack Bitcoin users

How would I attack Bitcoin users

Many other vectors…

How would I attack Bitcoin users

Many other vectors…

How would I attack Bitcoin users

Many other vectors…

- by default, debian pkg checks that package have a valid signature but
not which key was used (always add [signed-by=…] in your repo
instructions!)

How would I attack Bitcoin users

Many other vectors…

- by default, debian pkg checks that package have a valid signature but
not which key was used (always add [signed-by=…] in your repo
instructions!)
- random docker images used for building

How would I attack Bitcoin users

Many other vectors…

- by default, debian pkg checks that package have a valid signature but
not which key was used (always add [signed-by=…] in your repo
instructions!)
- random docker images used for building
- similarly/identically named tools or libraries… be creative!

How would I attack Bitcoin users

Many other vectors…

- by default, debian pkg checks that package have a valid signature but
not which key was used (always add [signed-by=…] in your repo
instructions!)
- random docker images used for building
- similarly/identically named tools or libraries… be creative!
- malicious mirror with ISO pointing to malicious default repositories
(get your SHASUMs from another, trusted place?)

How I would try to mitigate this (easy to hard)

How I would try to mitigate this (easy to hard)
Use absolute paths for critical commands (bitcoind, lnd, …)

How I would try to mitigate this (easy to hard)
Use absolute paths for critical commands (bitcoind, lnd, …)

How I would try to mitigate this (easy to hard)
Use absolute paths for critical commands (bitcoind, lnd, …)

Don’t install stuff because they’re new, shiny and hype - their code
review coverage is probably close to 0

How I would try to mitigate this (easy to hard)
Use absolute paths for critical commands (bitcoind, lnd, …)

Don’t install stuff because they’re new, shiny and hype - their code
review coverage is probably close to 0

How I would try to mitigate this (easy to hard)
Use absolute paths for critical commands (bitcoind, lnd, …)

Don’t install stuff because they’re new, shiny and hype - their code
review coverage is probably close to 0

Sign the actual binaries inside the archives in addition/instead of
signing the archives

How I would try to mitigate this (easy to hard)
Use absolute paths for critical commands (bitcoind, lnd, …)

Don’t install stuff because they’re new, shiny and hype - their code
review coverage is probably close to 0

Sign the actual binaries inside the archives in addition/instead of
signing the archives

How I would try to mitigate this (easy to hard)
Use absolute paths for critical commands (bitcoind, lnd, …)

Don’t install stuff because they’re new, shiny and hype - their code
review coverage is probably close to 0

Sign the actual binaries inside the archives in addition/instead of
signing the archives

Don’t install stuff with “npm -g” (it’s unlikely you need your random
tools installed for all users of the system!)

How I would try to mitigate this (easy to hard)
Use absolute paths for critical commands (bitcoind, lnd, …)

Don’t install stuff because they’re new, shiny and hype - their code
review coverage is probably close to 0

Sign the actual binaries inside the archives in addition/instead of
signing the archives

Don’t install stuff with “npm -g” (it’s unlikely you need your random
tools installed for all users of the system!)

How I would try to mitigate this (easy to hard)
Use absolute paths for critical commands (bitcoind, lnd, …)

Don’t install stuff because they’re new, shiny and hype - their code
review coverage is probably close to 0

Sign the actual binaries inside the archives in addition/instead of
signing the archives

Don’t install stuff with “npm -g” (it’s unlikely you need your random
tools installed for all users of the system!)

Don’t install stuff pulling hundreds of dependencies from random
maintainers…

How I would try to mitigate this (easy to hard)
Use absolute paths for critical commands (bitcoind, lnd, …)

Don’t install stuff because they’re new, shiny and hype - their code
review coverage is probably close to 0

Sign the actual binaries inside the archives in addition/instead of
signing the archives

Don’t install stuff with “npm -g” (it’s unlikely you need your random
tools installed for all users of the system!)

Don’t install stuff pulling hundreds of dependencies from random
maintainers…

How I would try to mitigate this (easy to hard)

How I would try to mitigate this (easy to hard)
Use a disposable keystore to import keys and check signatures

How I would try to mitigate this (easy to hard)
Use a disposable keystore to import keys and check signatures

How I would try to mitigate this (easy to hard)
Use a disposable keystore to import keys and check signatures

Use tripwire, systraq or similar tools to keep signatures of critical binaries (as in gpg, tar,
system tools) and check if they were modified before using them for anything critical

How I would try to mitigate this (easy to hard)
Use a disposable keystore to import keys and check signatures

Use tripwire, systraq or similar tools to keep signatures of critical binaries (as in gpg, tar,
system tools) and check if they were modified before using them for anything critical

How I would try to mitigate this (easy to hard)
Use a disposable keystore to import keys and check signatures

Use tripwire, systraq or similar tools to keep signatures of critical binaries (as in gpg, tar,
system tools) and check if they were modified before using them for anything critical

Use read-only file systems for binaries and/or chattr +i (still can be overidden by root)

How I would try to mitigate this (easy to hard)
Use a disposable keystore to import keys and check signatures

Use tripwire, systraq or similar tools to keep signatures of critical binaries (as in gpg, tar,
system tools) and check if they were modified before using them for anything critical

Use read-only file systems for binaries and/or chattr +i (still can be overidden by root)

How I would try to mitigate this (easy to hard)
Use a disposable keystore to import keys and check signatures

Use tripwire, systraq or similar tools to keep signatures of critical binaries (as in gpg, tar,
system tools) and check if they were modified before using them for anything critical

Use read-only file systems for binaries and/or chattr +i (still can be overidden by root)

Have a “firmware” approach with the base OS and bitcoin binaries built in a read-only
bootable image and all data/user stuff on a hard drive/SSD (doesn’t solve all attacks
explained here though)

How I would try to mitigate this (easy to hard)
Use a disposable keystore to import keys and check signatures

Use tripwire, systraq or similar tools to keep signatures of critical binaries (as in gpg, tar,
system tools) and check if they were modified before using them for anything critical

Use read-only file systems for binaries and/or chattr +i (still can be overidden by root)

Have a “firmware” approach with the base OS and bitcoin binaries built in a read-only
bootable image and all data/user stuff on a hard drive/SSD (doesn’t solve all attacks
explained here though)

How I would try to mitigate this (easy to hard)
Use a disposable keystore to import keys and check signatures

Use tripwire, systraq or similar tools to keep signatures of critical binaries (as in gpg, tar,
system tools) and check if they were modified before using them for anything critical

Use read-only file systems for binaries and/or chattr +i (still can be overidden by root)

Have a “firmware” approach with the base OS and bitcoin binaries built in a read-only
bootable image and all data/user stuff on a hard drive/SSD (doesn’t solve all attacks
explained here though)

Have a pre-run, decentralised signature/check system of anything running on the
machine (similar to Apple / M$ signing?)

The end.

Don’t panic (yet)
Thank you for watching
• If you find this interesting (or totally stupid), let’s continue the discussion!

• Let’s start a fresh web of trust! Ask me for paper fingerprint.

• contact@ketominer.pw -
440C 1576 9D19 E690 8CC1 DDB2 3070 DE97 72DB 8A48

• twitter / telegram / … @ketominer

• slides will be available on https://ketominer.pw/talks shortly

• do not install https://www.npmjs.com/package/super-bitcoin-tool :)

• https://nodl.eu - https://host4coins.net

mailto:contact@ketominer.pw
https://ketominer.pw/talks
https://www.npmjs.com/package/super-bitcoin-tool
https://nodl.eu
https://host4coins.net

